home *** CD-ROM | disk | FTP | other *** search
- How many live groups can there be on a go board?
-
- [Note: I changed all black stones to # for consistency. --editor]
-
- Subject: Number of live groups.
- From: wft@math.canterbury.ac.nz (Bill Taylor)
-
- Yijun Ding asks what is the maximum possible number of groups
- in a game.
-
- Yes; I know he was asking for a practical maximum, for computer
- programming purposes, rather than a theoretical one; but I choose
- to interpret it the latter way. After all, it's clear that there's
- way too many computer scientists on rec.games.go and not nearly
- enough mathematicians ;-) .
-
- Anyway, the question, the maximum possible number of groups on the
- board, has two interpretations (at least).
-
- 1: Maximum number independently alive.
- 2: Maximum number alive in seki (or similar).
-
- Both of these are difficult to define unambiguously, without 134
- densely printed pages of Japanese-style-rule bookishness. However
- we'll take for granted, (temporarily), that we all know what we mean.
-
- It's already been mentioned that things like O . O . . .
- might be considered as either one or two . O O . .
- groups, but I'll assume that it's clearly O O O .
- one, in the spirit of the regular rules. . . . .
-
- Whereas something like this (on a 4x4 board),
- would have to be counted as four groups, . # O O
- two black and two white. The separate halves # . O #
- of the black groups are `connected' by a O O . #
- uni-colored eye; this doesn't hold for the # # # .
- two white bits.
-
- Anyway, none of this appears to be relevant for the answers to
- questions 1 and 2 above; on a 19x19 board at least.
-
- I get answers of 28, and 60, respectively.
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- As always, I would be delighted to see anyone write in with improvements.
-
- Here are my solutions.
-
- 1: . O # . # O . O # . # O . O # . # O .
- O O # # # O O O # # # O O O # # # O O
- . O # . # O . O # . # O . O # . # O .
- O O # # # O O O # # # O O O # # # O O
- # # O O O # # # O O O # # # O O O # #
- . # O . O # . # O . O # . # O . O # .
- # # O O O # # # O O O # # # O O O # #
- . # O . O # . # O . O # . # O . O # .
- # # O O O # # # O O O # # # O O O # #
- O O # # # O O O # # # O O O # # # O O
- . O # . # O . O # . # O . O # . # O .
- O O # # # O O O # # # O O O # # # O O
- . O # . # O . O # . # O . O # . # O .
- O O # # # O O O # # # O O O # # # O O
- # # O O O # # # O O O # # # O O O # #
- . # O . O # . # O . O # . # O . O # .
- # # O O O # # # O O O # # # O O O # #
- . # O . O # . # O . O # . # O . O # .
- . # O . O # . # O . O # . # O . O # . 28 groups fully alive.
-
-
- 2: # . O # . O # . O # . O # . O # . O O
- # . O # . O # . O # . O # . O # . O O
- # # O # # O # # O # # O # # O # # O O
- O O # O O # O O # O O # O O # O O # #
- O . # O . # O . # O . # O . # O . # #
- O . # O . # O . # O . # O . # O . # #
- O O # O O # O O # O O # O O # O O # #
- # # O # # O # # O # # O # # O # # O O
- # . O # . O # . O # . O # . O # . O O
- # . O # . O # . O # . O # . O # . O O
- # # O # # O # # O # # O # # O # # O O
- O O # O O # O O # O O # O O # O O # #
- O . # O . # O . # O . # O . # O . # #
- O . # O . # O . # O . # O . # O . # #
- O O # O O # O O # O O # O O # O O # #
- # # O # # O # # O # # O # # O # # O O
- # . O # . O # . O # . O # . O # . O O
- # . O # . O # . O # . O # . O # . O O
- # # O # # O # # O # # O # # O # # O O 60 groups alive in seki.
-
-
-
- From: smith@pell.anu.edu.au (Michael Smith)
-
- I didn't have time to fine tune this -- It might be possible to get an extra
- group one the edge somewhere.
-
- Simply based on regular pattern in capital stones :-) which are a more
- efficient way of covering the board than the way you chose:
-
- Instead of 15 intersections for the groups in the centre, I only use 12.
-
- However I only get one extra fully alive group for a total of 29:
-
- # # # # O O . O # # # # # # # # o o .
- # # . # O . O O # # O O # # . # o . o
- # . # # O O # # O O . O # . # # o o o
- # # O O # # . # O . O O # # O O # # #
- O O . O # . # # O O # # O O . O # # .
- O . O O # # O O # # . # O . O O # . #
- O O # # O O . O # . # # O O # # o # #
- # # . # O . O O # # O O # # . # o o o
- # . # # O O # # O O . O # . # # o # #
- # # O O # # . # O . O O # # O O o # .
- O O . O # . # # O O # # O O . O # . #
- O . O O # # O O # # . # O . O O # # #
- O O # # O O . O # . # # O O # # o o o
- # # . # O . O O # # O O # # . # o . o
- # . # # O O # # O O . O # . # # o o .
- # # O O # # . # O . O O # # O O # o o
- O O . O # . # # O O # # O O . O # # #
- O . O O # # o o # # . # O . O O # # .
- O O o o o o o o # . # # O O # # # . #
-
-
- But I think with a bit more thought I can fine tune this.
-
- Next question is how can you PROVE that a certain number is the maximum -
- apart from trying every combination of alive stones on a board and counting.
-
-
- From: wft@math.canterbury.ac.nz (Bill Taylor)
-
- Following up my own post, I'm able to improve one of my records for
- the maximum number of live groups on a go board.
-
- The formation is....
-
- . # . O . # . O . # . O . # . O . # .
- # # O O # # O O # # O O # # O O # # #
- O O # # O O # # O O # # O O # # O O O
- . O . # . O . # . O . # . O . # . O .
- O O # # O O # # O O # # O O # # O O O
- # # O O # # O O # # O O # # O O # # #
- . # . O . # . O . # . O . # . O . # .
- # # O O # # O O # # O O # # O O # # #
- O O # # O O # # O O # # O O # # O O O
- . O . # . O . # . O . # . O . # . O .
- O O # # O O # # O O # # O O # # O O O
- # # O O # # O O # # O O # # O O # # #
- . # . O . # . O . # . O . # . O . # .
- # # O O # # O O # # O O # # O O # # #
- O O # # O O # # O O # # O O # # O O O
- . O . # . O . # . O . # . O . # . O .
- O O # # O O # # O O # # O O # # O O O
- # # O O # # O O # # O O # # O O # # #
- . # . O . # . O . # . O . # . O . # .
-
- which has 63 live groups alive in seki.
-
-
- From: wolfe@vina.Berkeley.EDU (David Wolfe)
-
- I've worked on the problem of fitting the most live "strings" on a
- board, where a string is a connected group of stones, and a live
- string includes life in seki.
-
- My understanding of Niek van Diespen's posting is that the solution is
- somewhere in the 130's:
- > Sometimes I'm simply too fast: Ger Hungerink also addressed the version
- > with seki's. I did not put too much time in that, but the maximum is
- > somewhere in the 130's, if I remember correctly. My last posting of
- > course only addressed the "Independently alive" case.
-
- I have a solution which has only 108 strings, and solves Bill Taylors
- original posting as well with 104 groups:
-
- . O # # O # . # O # O O O O O # # . #
- O . # # O # # . O # O . O . # O # # .
- # # . O O # # O . # # O O # . O O # #
- # # O . # O O # # . O # # O O . # O O
- O O O # . O O # # O . # # O O # . O O
- # # # O O . # O O # # . O # # O O . #
- . # # O O # . O O # # O . # # O O # .
- # . O # # O O . # O O # # . O # # O O
- O O . # # O O # . O O # # O . # # O O
- # # # . O # # O O . # O O # # . O # .
- O O # O . # # O O # . O O # # O O . #
- O . O # # . O # # O O . # O O # . O O
- O O O # # O . # # O O # . O O # # # #
- O . # O O # # . O # # O O . # O O # .
- O # . O O # # O . # # O O # . O O # #
- # O O . # O O # # . O # # O O . # O O
- # # O # . O O # # O O . # O O # . O O
- . # # O O . # O O # . O # # # O O . #
- # . # O O # . O O . # O # . # O O # .
-
- David Wolfe
- wolfe@melody.berkeley.edu
-
-
- From: herbison@manage.enet.dec.com (B.J.)
-
- >I have a solution which has only 108 strings, and solves Bill Taylors
- >original posting as well with 104 groups:
- >
- |. O # # O # . # O # O O O O O # # . #
- |O . # # O # # . O # O . O . # O # # .
- |# # . O O # # O . # # O O # . O O # #
- |# # O . # O O # # . O # # O O . # O O
- |O O O # . O O # # O . # # O O # . O O
- |# # # O O . # O O # # . O # # O O . #
- |. # # O O # . O O # # O . # # O O # .
- |# . O # # O O . # O O # # . O # # O O
- |O O . # # O O # . O O # # O . # # O O
- |# # # . O # # O O . # O O # # . ! # .
- |O O # O . # # O O # . O O # # ! ! . #
- |O . O # # . O # # O O . # O O # . O O
- |O O O # # O . # # O O # . O O # # # #
- |O . # O O # # . O # # O O . # O O # .
- |O # . O O # # O . # # O O # . O O # #
- |# O O . # O O # # . ! # # O O . # O O
- |# # O # . O O # # ! ! . # O O # . O O
- |. # # O O . # O O # . O # # # O O . #
- |# . # O O # . O O . # O # . # O O # .
-
- There are two O groups in this diagram with three liberties.
- (I replaced the Os with !s to make them stand out.) From
- this configuration, O can capture most of the board.
-
-
- From: wft@math.canterbury.ac.nz (Bill Taylor)
-
- I've been plugging away at this business of maximum number of LIVE groups
- possible on the board. (Of course without the "live" restriction, the
- checkerboard patterns that have been posted will easily win).
-
- I'm now convinced that the best . # # O O . # O # # .
- patterns will have a basic shape # . O # O # . O O # O average group
- like that shown here, ----------> # O . # # O O . # O # size:
- which must be the max possible O # # . O # O # . O O
- density of live groups in an O O # O . # # O O . # 2.5 intersections
- infinite board. (These groups are . # O # # . O # O # . per group.
- only alive in seki, of course.) # . O O # O . # # O O
-
- This density is noticably better than any other solutions seen on the net.
-
- It's a bit tricky fitting in stuff round the edges of a finite board, though.
- In view of the messy nature of my solution, and the alleged Dutch publication
- of a 130-odd group formation, I'm far from sure this is best possible. It
- must be close though.
-
- So here's my solution;128 groups (counting orthogonal connections only)
- 114 groups (counting 2 bits joined by an eye as the same)
-
- . # O O # . O . O O . # O O # . # O #
- # . O O # # # O O O # . O O # # . O #
- O O . # O # . # # # O O . # O # O . #
- O O # . O O # # . O # O # . O O # # .
- # # O O . # O # O . # # O O . # O # #
- . # # O # . O O # # . O # O # . O O #
- O # . # O O . # O # O . # # O O . # O
- . O # # # O # . O O # # . O # O # . O
- O O # . O # O O . # O # O . # # O O .
- O O # O . # # O # . O O # # . O # O O
- . # O # # . O # O O . # O # O . # # O
- # . O O # O . # # O # . O O # # . O #
- O O . # O # # . O # O O . # O # O . #
- O O # . O O # O . # # O # . O O # # .
- # # O O . # O # # . O # O O . # O # #
- . # # O # . O O # O . # # O # . O O #
- # . O # O O . # O # # . O # O O . # O
- O O . # # O # . O O # O . # # O # . O
- # # # . # # O O . O O # # . # # O O .
-
- Interestingly, (in Chinese counting), the result of the game is an
- eact tie ! ( 151 points each, with 59 neutral).
-
- From: maiorana%idacrd.uucp@princeton.edu (James Maiorana)
-
- This article is in reponse to wft@math.canterbury.ac.nz (Bill Taylor)'s
- message dated 21 May 92 04:19:15 GMT. He writes
-
- > I'm now convinced that the best . # # O O . # O # # .
- > patterns will have a basic shape # . O # O # . O O # O average group
- > like that shown here, ----------> # O . # # O O . # O # size:
- > which must be the max possible O # # . O # O # . O O
- > density of live groups in an O O # O . # # O O . # 2.5 intersections
- > infinite board. (These groups are . # O # # . O # O # . per group.
- > only alive in seki, of course.) # . O O # O . # # O O
- >
- > This density is noticably better than any other solutions seen on the net.
-
- There is also a variation on this configuration that proves useful,
- namely:
-
- . # #
- # . O #
- O O . # #
- O # . O #
- O O . # #
- O # . O #
- O O . # #
-
- Here we have shown only a single strip. These strips can be put together to
- cover an infinite board. This second configuration allows the boundary
- connectivity to change phase. He also writes
-
- > It's a bit tricky fitting in stuff round the edges of a finite board, though.
- > In view of the messy nature of my solution, and the alleged Dutch publication
- > of a 130-odd group formation, I'm far from sure this is best possible. It
- > must be close though.
- >
- > So here's my solution; 128 groups (counting orthogonal connections only)
- > 114 groups (counting 2 bits joined by an eye as the same)
-
-
- We were able to get to the 130-odd group level. We found the following:
-
- A B C D E F G H J K L M N O P Q R S T
- *-------------------------------------*
- 19 |. # . O # O O . O # O O . O O # # . #| 19
- 18 |O # O . # # O O . # # O O . # O # # .| 18
- 17 |O O # # . O # O # . O # O # . O # # #| 17
- 16 |. # O # O . # # O O . # # O O : O O #| 16
- 15 |# . O O # # . O # O # . O # # O . # O| 15
- 14 |O O . # O # O . # # O O . # # O # . O| 14
- 13 |# O # . O O # # . O # O # . O # O O .| 13
- 12 |# # O O . # O # O . # # O O . # # O O| 12
- 11 |. # # O # . O O # # . O # O # . O # O| 11
- 10 |# . O # O O . # O # O . # # O O . # #| 10
- 9 |# O . # # O # . O O # # . O # O # . O| 9
- 8 |O # # . O # O O . # O # O . # # O O .| 8
- 7 |O O # O . # O O # . O O # # . O # O O| 7
- 6 |. O O # # : # # O O . # O # O . # # O| 6
- 5 |O . # O O # . O # O # . O O # # . O #| 5
- 4 |# # . O O # O . # # O O . # O # O . #| 4
- 3 |O O O . # O # # . O # O # . O O # # .| 3
- 2 |O O O # . O O # O . # # O O . # O # O| 2
- 1 |O O O # O . O O # # . # # O # . O O :| 1
- *-------------------------------------*
- A B C D E F G H J K L M N O P Q R S T
-
- This arrangement has 132 groups (in the sense of connected components).
- If we allow connections though empty intersections, then the connected
- components combine to form 65 areas. The three colons are empty intersections
- that behave as false eyes (as opposed to seki points). The false eyes at F6
- and Q16 are the centers of "windmills". These windmills are there to solve
- phase problems with the edges of the board. Each one forms a single area
- with 4 connected components. The false eye at T1 is the center of another
- windmill. The following rearrangement of that corner makes this clear.
-
- # # O O . # #| 10
- . O # O # . O| 9
- O . # # O O .| 8
- # # . O # O O| 7
- O # O . # O O| 6
- O O # # : # #| 5
- . # O O # . O| 4
- # . O O # O .| 3
- O O . # O # #| 2
- # O # . O O .| 1
- -------------*
- N O P Q R S T
-
- This rearrangement does not change the area or component counts.
-